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2 % chance for p to be greater than the experimental 
value of 7 and that there is a 7% probability20 that 
p < l / 7 . Thus there is a significant probability that a 
single measurement of the ratio could result in a value 

20 The probability pr[p>af] is different from p r [ p < l / a ] be­
cause of the difference in the skewness of the probability density 
functions for the two sums of reduced neutron widths that deter­
mine p. If both sums are governed by the same density function, 
or if these functions are different but symmetrical, pr[p>of] is 
equal to pr[p < ! / « ] , of course. 

very different from unity. This leads us to conclude 
that although the measured value p—7 is somewhat 
surprising, it does not in any way establish the existence 
of a dependence of the strength function on spin; it 
merely suggests an area for further investigation. 
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It is shown that although a scalar meson can be described by a renormalizable field theory, it is not possible 
for such a particle to "bootstrap" itself, because the force arising from the crossed channels is too great. This 
result is in accordance with the "bootstrap" philosophy that there should be only one solution of the 5-matrix 
equations consistent with maximal analyticity of the second kind, and also indicates the need for symmetries 
in strong interactions. 

INTRODUCTION 

IT has been proposed that there should be only one 
solution for the scattering matrix in strong inter­

actions which is consistent with unitarity and maximal 
analyticity of the second kind.1 All the poles should be 
continuable in angular momentum. This would mean 
that no experimental information need be included to 
derive the properties of all the observed particles, 
whether bound states or resonances. Alternatively it 
may be that it is necessary to know the masses and 
coupling constants of a certain number of " elementary'' 
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FIG. 1. The unitarity 
diagrams. 

*This work was performed under the auspices of the U. S. 
Atomic Energy Commission. 

1 See, for example, G. F. Chew and S. C. Frautschi, Phys. Rev. 
Letters 7, 395 (1961); F. Zachariasen and C. Zemach, Phys. Rev. 
128, 849 (1962); E. Abers and C. Zemach, ibid. 131, 2305 (1963). 

particles before the properties of the other particles can 
be derived from purely dynamical considerations. 

As yet we are unable to perform calculations that 
encompass all the known particles, and so no decision 
can be made in the matter, but one might be able to 
show that a set of particles other than those which have 
been observed can give rise to a self-consistent S matrix, 
i.e., can "bootstrap" themselves, and thus demonstrate 
the need for the inclusion of at least some experimental 
information in order to arrive at the solution corre­
sponding to the real world. 

Of course if the hypothetical set of particles is too 
complicated one is again unable to solve the ^-matrix 
equations, but if only a single type of particle is con­
sidered the problem is quite tractable. The neutral 
scalar meson is a likely candidate, because it obeys the 
renormalizable Hurst-Thirring2 field theory with an 
interaction Lagrangian 

£ i = \<£3, (1) 

and thus is viable as an independent particle. Other 
renormalizable field theories involve the interaction of 
two different types of particles. I t is certainly not 
obvious that a "bootstrap" solution can exist because, 
as we shall show, there are fewer free parameters than 
conditions to be satisfied, but of course this is also true 
of the hypothetical solution involving all the strongly 
interacting particles. In this article we shall try to 

2 N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory 
of Quantized Fields (Interscience Publishers, Inc., New York, 
1959), p. 352. 
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discover whether it is possible for neutral scalar mesons 
alone to form a solution of the "bootstrap" equations, 
in contradiction to the "bootstrap" philosophy. 

THE CROSSING SYMMETRIC SCATTERING 
AMPLITUDE 

In our calculation we include forces from the exchange 
of a bound state [Fig. 1(a)], as well as two-particle 
states [Fig. 1(b)], but neglect forces from the exchange 
of three or more particles [Fig. 1(c)]. Correspondingly 
we neglect in the unitarity condition the contribution of 
intermediate states containing three or more particles 
whose thresholds lie at 9m2 and above. 

In the Mandelstam representation the amplitude may 
be written 

yl(s,COS0) = 
m2+2q2(l+cosd) m2+2qs

2(l-cosd) 

At{s,tf^m2-s-tf) 1 f At 
- / it— 
ir J tf +2?s

2(l+cos6>) 

Au(sy^m2~ s—u',u') 1 f Au( 
+ - / du' 

7T J u' uf+2q2(i-co$6) 
(2) 

where s, t, and u are the usual squares of the four-
momentum invariants, q=\2, and At and Au are the 
absorptive parts in the / and u channels. 0 is the 
scattering angle, and gs is the center-of-mass momentum 
in the s channel: 

s^^s
2+m2); t^ -2q8

2(l+cosd) ; u= -2q2(l~co$d). 

If maximal analyticity of the second kind is assumed, 
the pole in s is contained in the integrals over A % and A u. 

We define the partial-wave amplitude 

A i(s) = § / d(cosd)Pi(cosd)A (s,cos<9). (3) 

Substituting (2) in (3), we find that the s-wave ampli­
tude has, in addition to the fixed s singularities of 
A (s,cosd) shown in Fig. 2, branch points at s = 3m2 from 
the pole terms, and at s = 0 from the elastic t and u 
thresholds. The inelastic thresholds in the crossed 
channels would give rise to branch points at — Sm2, but 
again we neglect these. The singularities of A o are shown 
in Fig. 3. 

The imaginary part of A o along these left-hand cuts is 

ImAQ-=27Tg/(s~-4:m2)J for 0 < K 3 m 2 

I i m 4 0 = -
2irg 

S—4:M2 S — 4:M2 f At(t,s)dt, for j < 0 , (4) 

where we remember that A8=At:=Au for our sym­
metrical problem. 

If we are to have a self-consistent solution, these 
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FIG. 2. Singularities of the scattering amplitude in the s channel. 

left-hand cuts should provide an attractive force 
sufficient to produce the bound state at s = m2. Since we 
have the parameter g at our disposal, it will be possible 
to choose it such that this condition is satisfied, keeping 
As=At. However, self-consistency also demands that 
the residue of the pole be equal to the value of g which 
we have used. There is no guarantee a priori that this 
can be so, because we have no further free parameters 
in the problem. I t will be realized that the mass m is not 
a parameter because it serves only to define the size of 
our energy unit. There is only one dimensionless free 
parameter, g/m2, but there are two criteria to be satis­
fied : crossing symmetry of both the pole positions and 
its residue. 

THE N/D EQUATIONS 

The problem may conveniently be solved following 
the method of Chew and Mandelstam.3 

We define the amplitude to be 

Ao(s)=N(s)/D(s): (5) 

where N(s) has the left-hand cuts of Ao, and D(s) has 
the right-hand unitary cut. 

ImN(s) = D(s)ImAo(s) for s<3m2. (6) 

Along the right-hand unitary cut we may write 

. A0(s) = e^hmd(s)/p(s), (7) 

where 8(s) is the phase shift, and p(s) = [(s—4w2)/^]1 / 2 ; 
comparing real and imaginary parts, we have 

Im(l/Ao) = ~p(s), (8) 

or 
ImD=~p(s)N(s) for s>Am2. (9) 

Thus we may write dispersion relations for N and D: 

1 r ^ ^ C O I m ^ o C O 
N{s) = - \ r — 

7T J __oo S — S 

•ds', 

D(s) = l 
1 r« 

IT J in 

P{s')N(s>) 
ds\ 

(10) 

(11) 

where we have normalized D to 1 and N to 0 at infinity, 
selecting the solution without poles in N or D pre­
scribed by second-degree analyticity. Substituting (10) 
in (11) and integrating over the right-hand cut, we 

3 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960); 
G. F. Chew, S. Mandelstam, and H. P. Noyes, ibid. 119, 478 
(1960). 



B712 P . D . B . C O L L I N S 

FIG. 3. Singularities of AQ(s). 

obtain 

D(s) 
I [dm* 

7T2 J-oo 

where 

#(v')=-

iT(^/)Im^0(/)Z)(/)r// , (12) 

2 r / j - 4 w 2 \ 1 / 2 / ( ^ - 4 W 2 ) 1 / 2 + J 1 / 2 A 1 / 2 / 

•) K 
/*'-4w2 \1 / 2 / ( 

- ( — ) ' " ( -

s / \ 2w 

fsf-4m2\1f\ /(5 /-4m2)1/2+^1/2\-l 

'̂ / \ 2ra 

If Im^4(/) vanishes as s'—»— °o? this is a Fredholm 
equation for D which can be solved providing that we 
know At in Eq. (4). Along the right-hand cut Re(1/A) 
= ReD/N, and comparing real and imaginary parts in 
Eq. (8), we find 

P(s) 
ImAQ(s) = for s>\m2. (13) 

P
2(s)+(ReD/N)2 

If we suppose that the imaginary part of the amplitude 
is contained wholly in the s wave, we can identify 

ImAo(s)=A8(s,t). (14) 

The validity of this approximation will be discussed 
later. Remembering that A s should be equal to A t, we 
now have a means of calculating the second term on the 
right-hand side of formula (5) in a self-consistent 
manner. One easily verifies that the resulting ImAo(s) 
vanishes as s —>— <*>. 

We first take Iim4 o to be given just by the first term 
of (4), and solve (12) for D. With this solution we solve 
(10) for N, and then obtain As from (13). Substituting 
this value of A s in Eq. (4), we can repeat the cycle, and 
continue until self-consistency is achieved. 

The equations were solved on a computer, using the 
transformed variable x2= — (4m2/s—4m2) for the inte­
gral equation, so that the range of integration in (12) 
becomes #=0 to 2. In this range, 50 mesh points were 
taken, and the equation was solved by matrix inversion. 
Five cycles were required to produce self-consistency 
between the elastic discontinuities in the crossed and 
direct channels. Various values of g were tried until a 
solution with a zero in D(s) 8its = m2 was obtained. This 
gives an amplitude which is also self-consistent as 
regards the pole positions in the crossed and direct 
channels, and fixes the value of g. A graph of the solu­
tion is given in Fig. 4. 

It only remains to discover whether the residue of 
this direct channel pole is equal to g. Now l/A(s) 

— D(s)/N(s), and expanding about s — m2, and remem­
bering that D(m2)=0, we have 

1 dD(s)/ds\n? 
—-= (s—m2) 1 , 
A N{m2) 

so that the residue is 

N{m2) 

dD(s)/ds\ 
(15) 

If we have found a bootstrap solution, gf will be equal 
to g. In fact we find that to get a direct channel pole at 
m2 requires g/m2 = 9.3, but that in this case g'/tn2=67. 
This discrepancy is so great that it is most unlikely that 
it could be rectified by improving the approximations. 

One approximation has been to use Eq. (14), whereas 
the full expression is 

4.(V) = £ {2l+\)lmAl{s)P\ (16) 

though this is not convergent for large | / | . Because of 
parity, there is no coupling of the even and odd partial 
waves, so the lowest neglected wave is the D wave. We 
can estimate its order of magnitude by taking the D-
wave Born term generated by the crossed channel poles, 

g r / m2\ f m2\~\ 
3 2 ( s ) = — Q J . 1 + — ) - 0 , ( - l 

2<7/L V 2q.*J \ 2fl.vJ 2gs
2L \ 2qs 

and applying elastic unitarity, 

ImAzis)--
P(S) 

p^+il/Btf 
(17) 

We find that ImA 2 is only a few percent of Im^4 0 in 
the region between the threshold and the inelastic 
threshold, although it rises to nearly one third of its 
value at s = 15 m2. However, it is the low-energy region 
just above threshold which is important for the integral 
in Eq. (5), except for large negative s. [Remember that 
At is obtained from (16) by interchanging s and /.] The 
Z>-wave contribution to the total force should thus be 
small, and even if there is some additional force it is 
unlikely that it will change the ratio of g to gf greatly. 
An indication is given by the fact that if we solve the 
problem including only the force from the poles and not 

FIG. 4. The solution for D(s). 
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from the S-wave elastic discontinuity, though g has to 
be increased to 16.5, gf becomes 105, and the large 
discrepancy is maintained. 

DISCUSSION OF THE RESULTS 

Of course if we had included a pole in the equation for 
N, writing (10) in the form 

N(s) = 7 *™2 D(s')ImAQ(s') 
-ds'-

and normalized D(s) to unity at s = m2, it would have 
been possible to impose complete crossing symmetry 
for any value of g which is not so great as to produce a 
zero of D. This introduction of a UCDD" pole4 corres­
ponds to treating the meson as an elementary particle, 
and gives the solution corresponding to the \ $ 3 field 
theory. Our solution of the N/D equations gives a 
boundstate pole which lies on a Regge trajectory, and 
is the solution corresponding to maximal analyticity of 
the second kind. 

Implicit in the calculation is the assumption that this 
trajectory, Fig. 5, is the leading trajectory. I t is the fact 
that a(t) < 0 for t<0 which assures the required asymp­
totic behavior of the kernel in (12), and enables us to 
avoid a cutoff parameter.5 Through crossing symmetry 
the total cross section goes to zero at high energy as 
sa(o)-i a n c [ the low-energy elastic S wave dominates the 
dynamics. However, it could be that the meson is not 
on the leading trajectory, but that the high-energy 
behavior is controlled by one or more higher trajectories. 
For example, in Fig. 6 we show a Pomeranchuk tra-

FIG. 5. The Regge 
trajectory. 

FIG. 6. Pomeran­
chuk and meson tra­
jectories. 

4 L. Castillejo, R. H. Dalitz, and F. T. Dyson, Phys. Rev. 101, 
453 (1956). 

6 R. Omnes, Phys. Rev. 133, B 1543 (1964). 

jectory (which would give a constant total cross section 
at high energy), the scalar meson being associated with 
a secondary trajectory. Such a solution, if it is possible, 
would probably contain a spin-2 (Z)-wave) resonance, 
and high-energy effects would be crucial. But if our 
neglect of this possibility is justified we have shown that 
a scalar meson cannot "bootstrap" itself. 

A final point which may be remarked is that we are 
unable to obtain a self-consistent solution because the 
force from the crossed channels is too great (g<gf). 
However, if instead of a single particle we had a set 
forming a representation of some symmetry group, the 
crossed and direct channels would be related by a cross­
ing matrix, and only some fraction of the strong s-wave 
force would be available to any given two-particle 
channel. Thus for SU2 the isotopic-spin crossing matrix 
is3 

'1/3 1 5/3" 
1/3 1/2 - 5 / 6 

.1/3 - 1 / 2 1/6, 

and so for our problem with 7 = 0 , the contribution from 
7' = 0 would be only one-third as great. Higher sym­
metries give smaller fractions [\/{n2— 1) for SU n ] , 6 and 
our results perhaps indicate the need for there to be such 
symmetries if "bootstrap" solutions are to be obtained. 
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